Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Sung Soo Chung"
Filter
Filter
Article type
Keywords
Publication year
Authors
Original Articles
Endocrine Research
Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1
Hwa Young Ahn, Hwan Hee Kim, Ye An Kim, Min Kim, Jung Hun Ohn, Sung Soo Chung, Yoon-Kwang Lee, Do Joon Park, Kyong Soo Park, David D. Moore, Young Joo Park
Endocrinol Metab. 2015;30(4):584-592.   Published online December 31, 2015
DOI: https://doi.org/10.3803/EnM.2015.30.4.584
  • 3,764 View
  • 39 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDFPubReader   
Background

Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1).

Methods

We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line

Results

Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding.

Conclusion

We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1.

Citations

Citations to this article as recorded by  
  • Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease
    Ting-ying Jiao, Yuan-di Ma, Xiao-zhen Guo, Yun-fei Ye, Cen Xie
    Acta Pharmacologica Sinica.2022; 43(5): 1103.     CrossRef
  • Loperamide induces excessive accumulation of bile acids in the liver of mice with different diets
    Zili Lei, Hedong Rong, Yanhong Yang, Siping Yu, Tianle Zhang, Lei Chen, Ya Nie, Qi Song, Qing Hu, Jiao Guo
    Toxicology.2022; 477: 153278.     CrossRef
  • Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms
    Giuseppe Ferrandino, Rachel R. Kaspari, Olga Spadaro, Andrea Reyna-Neyra, Rachel J. Perry, Rebecca Cardone, Richard G. Kibbey, Gerald I. Shulman, Vishwa Deep Dixit, Nancy Carrasco
    Proceedings of the National Academy of Sciences.2017;[Epub]     CrossRef
Close layer
Obesity and Metabolism
Mitochondrial Complexes I and II Are More Susceptible to Autophagy Deficiency in Mouse β-Cells
Min Joo Kim, Ok Kyong Choi, Kyung Sil Chae, Min Kyeong Kim, Jung Hee Kim, Masaaki Komatsu, Keiji Tanaka, Hakmo Lee, Sung Soo Chung, Soo Heon Kwak, Young Min Cho, Kyong Soo Park, Hye Seung Jung
Endocrinol Metab. 2015;30(1):65-70.   Published online March 27, 2015
DOI: https://doi.org/10.3803/EnM.2015.30.1.65
  • 3,954 View
  • 40 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDFPubReader   
Background

Damaged mitochondria are removed by autophagy. Therefore, impairment of autophagy induces the accumulation of damaged mitochondria and mitochondrial dysfunction in most mammalian cells. Here, we investigated mitochondrial function and the expression of mitochondrial complexes in autophagy-related 7 (Atg7)-deficient β-cells.

Methods

To evaluate the effect of autophagy deficiency on mitochondrial function in pancreatic β-cells, we isolated islets from Atg7F/F:RIP-Cre+ mice and wild-type littermates. Oxygen consumption rate and intracellular adenosine 5'-triphosphate (ATP) content were measured. The expression of mitochondrial complex genes in Atg7-deficient islets and in β-TC6 cells transfected with siAtg7 was measured by quantitative real-time polymerase chain reaction.

Results

Baseline oxygen consumption rate of Atg7-deficient islets was significantly lower than that of control islets (P<0.05). Intracellular ATP content of Atg7-deficient islets during glucose stimulation was also significantly lower than that of control islets (P<0.05). By Oxygraph-2k analysis, mitochondrial respiration in Atg7-deficient islets was significantly decreased overall, although state 3 respiration and responses to antimycin A were unaffected. The mRNA levels of mitochondrial complexes I, II, III, and V in Atg7-deficient islets were significantly lower than in control islets (P<0.05). Down-regulation of Atg7 in β-TC6 cells also reduced the expression of complexes I and II, with marginal significance (P<0.1).

Conclusion

Impairment of autophagy in pancreatic β-cells suppressed the expression of some mitochondrial respiratory complexes, and may contribute to mitochondrial dysfunction. Among the complexes, I and II seem to be most vulnerable to autophagy deficiency.

Citations

Citations to this article as recorded by  
  • Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet
    Belinda Yau, Sheyda Naghiloo, Alexis Diaz-Vegas, Austin V. Carr, Julian Van Gerwen, Elise J. Needham, Dillon Jevon, Sing-Young Chen, Kyle L. Hoehn, Amanda E. Brandon, Laurence Macia, Gregory J. Cooney, Michael R. Shortreed, Lloyd M. Smith, Mark P. Keller,
    iScience.2021; 24(10): 103099.     CrossRef
  • Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells
    Aiqing Zhang, Wei He, Huimin Shi, Xiaodan Huang, Guozhong Ji
    Molecular Medicine Reports.2016; 14(4): 3179.     CrossRef
  • Autophagy deficiency in β cells blunts incretin-induced suppression of glucagon release from α cells
    Min Joo Kim, Ok Kyong Choi, Kyung Sil Chae, Hakmo Lee, Sung Soo Chung, Dong-Sik Ham, Ji-Won Kim, Kun-Ho Yoon, Kyong Soo Park, Hye Seung Jung
    Islets.2015; 7(5): e1129096.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism